博客
关于我
【Leetcode】873. Length of Longest Fibonacci Subsequence
阅读量:222 次
发布时间:2019-02-28

本文共 1228 字,大约阅读时间需要 4 分钟。

题目地址:

给定一个严格升序数组 A A A,求其中的最长的斐波那契数列的长度。数列的长度要求至少是 3 3 3

思路是动态规划。设 f [ i ] [ j ] f[i][j] f[i][j]是以 A [ i ] , A [ j ] A[i],A[j] A[i],A[j]结尾的最长斐波那契数列的长度。那么,如果 A A A里有 A [ j ] − A [ i ] A[j]-A[i] A[j]A[i],比如其下标是 x x x,那么 f [ i ] [ j ] = 1 + f [ x ] [ i ] f[i][j]=1+f[x][i] f[i][j]=1+f[x][i],否则 f [ i ] [ j ] = 2 f[i][j]=2 f[i][j]=2,这里还需要注意, A [ j ] − A [ i ] < A [ i ] A[j]-A[i]<A[i] A[j]A[i]<A[i]要成立,也就是序列的次序不能变。代码如下:

import java.util.HashMap;import java.util.Map;public class Solution {       public int lenLongestFibSubseq(int[] A) {           Map
map = new HashMap<>(); for (int i = 0; i < A.length; i++) { map.put(A[i], i); } int res = 0; int[][] dp = new int[A.length][A.length]; for (int i = 0; i < A.length; i++) { for (int j = i + 1; j < A.length; j++) { dp[i][j] = 2; int prev = A[j] - A[i]; if (prev < A[i] && map.containsKey(prev)) { dp[i][j] = 1 + dp[map.get(prev)][i]; } res = Math.max(res, dp[i][j]); } } return res > 2 ? res : 0; }}

时空复杂度 O ( n 2 ) O(n^2) O(n2)

转载地址:http://gocs.baihongyu.com/

你可能感兴趣的文章
nft文件传输_利用remoting实现文件传输-.NET教程,远程及网络应用
查看>>
NFV商用可行新华三vBRAS方案实践验证
查看>>
ng build --aot --prod生成文件报错
查看>>
ng 指令的自定义、使用
查看>>
ng6.1 新特性:滚回到之前的位置
查看>>
nghttp3使用指南
查看>>
Nginx
查看>>
nginx + etcd 动态负载均衡实践(一)—— 组件介绍
查看>>
nginx + etcd 动态负载均衡实践(三)—— 基于nginx-upsync-module实现
查看>>
nginx + etcd 动态负载均衡实践(二)—— 组件安装
查看>>
nginx + etcd 动态负载均衡实践(四)—— 基于confd实现
查看>>
Nginx + Spring Boot 实现负载均衡
查看>>
Nginx + Tomcat + SpringBoot 部署项目
查看>>
Nginx + uWSGI + Flask + Vhost
查看>>
Nginx - Header详解
查看>>
nginx - thinkphp 如何实现url的rewrite
查看>>
Nginx - 反向代理、负载均衡、动静分离、底层原理(案例实战分析)
查看>>
Nginx - 反向代理与负载均衡
查看>>
nginx 1.24.0 安装nginx最新稳定版
查看>>
nginx 301 永久重定向
查看>>