博客
关于我
【Leetcode】873. Length of Longest Fibonacci Subsequence
阅读量:222 次
发布时间:2019-02-28

本文共 1228 字,大约阅读时间需要 4 分钟。

题目地址:

给定一个严格升序数组 A A A,求其中的最长的斐波那契数列的长度。数列的长度要求至少是 3 3 3

思路是动态规划。设 f [ i ] [ j ] f[i][j] f[i][j]是以 A [ i ] , A [ j ] A[i],A[j] A[i],A[j]结尾的最长斐波那契数列的长度。那么,如果 A A A里有 A [ j ] − A [ i ] A[j]-A[i] A[j]A[i],比如其下标是 x x x,那么 f [ i ] [ j ] = 1 + f [ x ] [ i ] f[i][j]=1+f[x][i] f[i][j]=1+f[x][i],否则 f [ i ] [ j ] = 2 f[i][j]=2 f[i][j]=2,这里还需要注意, A [ j ] − A [ i ] < A [ i ] A[j]-A[i]<A[i] A[j]A[i]<A[i]要成立,也就是序列的次序不能变。代码如下:

import java.util.HashMap;import java.util.Map;public class Solution {       public int lenLongestFibSubseq(int[] A) {           Map
map = new HashMap<>(); for (int i = 0; i < A.length; i++) { map.put(A[i], i); } int res = 0; int[][] dp = new int[A.length][A.length]; for (int i = 0; i < A.length; i++) { for (int j = i + 1; j < A.length; j++) { dp[i][j] = 2; int prev = A[j] - A[i]; if (prev < A[i] && map.containsKey(prev)) { dp[i][j] = 1 + dp[map.get(prev)][i]; } res = Math.max(res, dp[i][j]); } } return res > 2 ? res : 0; }}

时空复杂度 O ( n 2 ) O(n^2) O(n2)

转载地址:http://gocs.baihongyu.com/

你可能感兴趣的文章
memcached高速缓存学习笔记003---利用JAVA程序操作memcached crud操作
查看>>
Memcached:Node.js 高性能缓存解决方案
查看>>
memcache、redis原理对比
查看>>
memset初始化高维数组为-1/0
查看>>
Metasploit CGI网关接口渗透测试实战
查看>>
Metasploit Web服务器渗透测试实战
查看>>
MFC模态对话框和非模态对话框
查看>>
Moment.js常见用法总结
查看>>
MongoDB出现Error parsing command line: unrecognised option ‘--fork‘ 的解决方法
查看>>
mxGraph改变图形大小重置overlay位置
查看>>
MongoDB可视化客户端管理工具之NoSQLbooster4mongo
查看>>
Mongodb学习总结(1)——常用NoSql数据库比较
查看>>
MongoDB学习笔记(8)--索引及优化索引
查看>>
mongodb定时备份数据库
查看>>
mppt算法详解-ChatGPT4o作答
查看>>
mpvue的使用(一)必要的开发环境
查看>>
MQ 重复消费如何解决?
查看>>
mqtt broker服务端
查看>>
MQTT 保留消息
查看>>
MQTT 持久会话与 Clean Session 详解
查看>>